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1 Introduction

In this note, we introduce the learning theory. Our goal is to learn a function f : X → Y
from some input space X to some output or label space Y . There is an underlying distribution

PX,Y over X × Y . However, it is normally unknown. On the basis of n i.i.d. samples

(x1, y1), · · · , (xn, yn), we aim to provide a prediction f̂ of f .

Definition 1.1 (Supervised Learning)

Definition 1.2 (Unsupervised Learning)

Definition 1.3 (Online Learning)

Definition 1.4 (Mathematical Machine Learning Model)

When we consider machine learning theory rather than classical statistics theory, it is

because

Statistics mostly focuses on asymptotic scenarios, and does not provide non-asymptotic

guarantees.

Statistics requires a well-behaved statistical model, e.g., distribution. However, real data,

e.g., text and image, could be more complex.

Statistics aims to find the entire prob distribution, which could be too costly to compute

and analyze.

2 Probability Inequalities

Lemma 2.1 (The Union Bound)
Consider events A1, · · · , At, we have

P(A1 ∪ · · · ∪At) ≤ P(A1) + · · ·+ P(At).



2 Probability Inequalities

Note on This bound is very useful in machine learning theory.

2.1 Chernoff Bounds

Theorem 2.1 (Chernoff Bounds)
Let X be a random variable with moment generating function M(t) = E[etX ]. Then for

any ϵ > 0

P{X ≥ ϵ} ≤ e−tϵM(t) ≤ inft>0 e
−tϵM(t) ∀t > 0

P{X ≤ ϵ} ≤ e−tϵM(t) ∀t < 0

Proof For t > 0, based on Markov’s inequality, we have

P{X ≥ ϵ} = P
{
etX ≥ etϵ

}
≤ E

[
etX
]
e−tϵ

And similarly, we can get another bound. Since the Chernoff bounds hold for all t in

either the positive or negative quadrant, we obtain the best bound by using the t that minimizes

e−tϵM(t). ■

Corollary 2.1 (Chernoff Bounds for i.i.d. Samples)
Suppose Xi are i.i.d., then for any t > 0,

P(µ̂n − µ ≥ ϵ) ≤ (MX−µ(t)e
−tϵ)n ≤ (inf

t>0
MX−µ(t)e

−tϵ)n.

Proof The important result is that Chernoff bounds “play nicely” with summations Ng, 2022,

which is a consequence of the moment generating function, i.e., if Xi are independent, then

MX1+···+Xn(t) =
n∏

i=1

MXi(t).

Thus,

P(µ̂n − µ ≥ ϵ) = P(
n∑

i=1

Xi − nµ ≥ nϵ)

≤ e−tnϵMX1+···+Xn−nµ(t) (Chernoff Bounds)

= e−tnϵ
n∏

i=1

MXi−µ(t)

= (MX−µ(t)e
−tϵ)n

■

Note on The exponetial decay shown by Chernoff’s inequality will be much faster than theO( 1n)

decay suggested by Chebyshev’s inequality.

Corollary 2.2 (Chernoff Tail Bound for Gaussians)
The optimized Chernoff tail bound for X ∼ N (0, σ2) will be

P(X ≥ ϵ) ≤ exp(− ϵ2

2σ2
).
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2 Probability Inequalities

Proof
P(X ≥ ϵ) ≤ e−tϵM(t) (Chernoff’s Bounds)

≤ inf
t>0

exp(
t2σ2

2
− tϵ)

= exp(inf
t>0

t2σ2

2
− tϵ) (exp is increasing)

= exp(− ϵ2

2σ2
) (t∗ =

ϵ

σ2
)

■

Corollary 2.3 (Chernoff Tail Bound for Gaussian Samples)
Given IID samples x1, · · · , xn ∼ N (µ, σ2) we have the following error bound for empir-

ical mean µ̂n = 1
n

∑n
i=1 xi:

P(µ̂n − µ ≥ ϵ) ≤ exp(−nϵ
2

2σ2
).

Proof A direct result of Corollary 2.1 and Corollary 2.1. ■

2.2 Hoffeding’s Inequality for Bounded Random Variables

Lemma 2.2 (Hoffeding’s Lemma)
Suppose that r.v. X is bounded and satisfies a ≤ X ≤ b for scalars a, b ∈ R. Then, X is

sub-Gaussian with parameter (b−a)2

4 , i.e., we have

E[et(X−E[X])] ≤ exp(
(b− a)2t2

8
).

Proof WLOG, by replacing Z by X − E[X], we can assume E[Z] = 0, so that a ≤ 0 ≤ b.

Since etz is convex, we have that for all z ∈ [a, b],

etz ≤ b− z
b− a

eta +
z − a
b− a

etb.

Thus,

E[etZ ] ≤ b− E[Z]
b− a

eta +
E[Z]− a
b− a

etb

=
b

b− a
eta +

−a
b− a

etb (E[Z] = 0)

= exp(−γu+ log(γeu + (1− γ))) = exp(g(u)),

where u = t(b − a) and γ = − a
b−a and the last equality can be established by solving eg(u) =

b
b−ae

ta + −a
b−ae

tb. Note that g(0) = g′(0) = 0 and g′′(u) ≤ 1
4 . By Taylor’s theorem, we have

exp(g(u)) = exp(g(0)+ ug′(0)+
u2

2
g′′(ε)) = exp(

u2

2
g′′(ε)) ≤ exp(

u2

8
) = exp(

(b− a)2t2

8
).

■
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3 Small Sample Theory

Theorem 2.2 (Hoffeding’s Inequality (Liao, 2020))
Suppose that r.v. X1, · · · , Xn are independent and bounded as ai ≤ Xi ≤ bi. Then,

defining the empirical mean µ̂n = 1
n

∑n
i=1Xi and underlying mean µ = 1

n

∑n
i=1 E[Xi]

results in the following concentration inequality:

P(µ− µ̂n ≥ ϵ) ≤ exp(− 2n2ϵ2∑n
i=1(bi − ai)2

),

P(µ̂n − µ ≥ ϵ) ≤ exp(− 2n2ϵ2∑n
i=1(bi − ai)2

).

Particularly, if ai = a and bi = b, we have

P(µ̂n − µ ≥ ϵ) ≤ exp(− 2nϵ2

(b− a)2
).

Proof
■

Theorem 2.3 (McDiarmid’s Inequality (Liao, 2020))
Let f : X n → R be a function such that for every x1, · · · , xn, x′1, · · · , x′n ∈ X the

following bounded differences condition holds:

∀1 ≤ i ≤ n : |f(x1, · · · , xi, · · · , xn)− f(x1, · · · , x′i, · · · , xn)| ≤ ci.

Then, assuming X1, · · · , Xn ∈ X are independent r.v., we have

P(f(X1, · · · , Xn)− E[f(X1, · · · , Xn)] ≥ ϵ) ≤ exp(− 2ϵ2∑n
i=1 c

2
i

),

P(E[f(X1, · · · , Xn)]− f(X1, · · · , Xn) ≥ ϵ) ≤ exp(− 2ϵ2∑n
i=1 c

2
i

).

Note on Hoeffding’s inequality is a special case of McDiarmid’s inequality for

f(x1, · · · , xn) =
1

n

n∑
i=1

xi.

3 Small Sample Theory

We summarize some useful definitions and theorems for limited sample theory which are

not covered in large sample theory. For definitions and theorems in large sample theory, please

refer to my notes on statistics.

3.1 Sub-Gaussian Random Variables
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4 Model-based Statistical Learning

Definition 3.1 (Sub-Gaussian Random Variables)
X with mean µ is called as a sub-Gaussian r.v. with parameter σ2 if the MGF of X − µ
(MX−µ) satisfies the following inequality at every t ∈ R:

MX−µ(t) := E[et(X−µ)] ≤ exp(
σ2t2

2
).

Corollary 3.1 (Sum of Independent Sub-Gaussians)
If X1, · · · , Xn are independent sub-Gaussian r.v. with parameters σ21, · · · , σ2n, then∑n

i=1Xi will be sub-Gaussian with parameter
∑n

i=1 σ
2
i .

Proof
M∑n

i=1 Xi−E[
∑n

i=1 Xi](t) = E[et(
∑n

i=1 Xi−
∑n

i=1 µi)]

=

n∏
i=1

E[et(Zi−µi ] (Independence)

≤
n∏

i=1

exp(
σ2i t

2

2
) = exp(

∑n
i=1 σ

2
i t

2

2
)

■

Corollary 3.2 (Scalar Product of Sub-Gaussians)
If X is sub-Gaussian r.v. with parameter σ2, then cX for scalar c ∈ R will be sub-

Gaussian with parameter c2σ2.

Corollary 3.3 (Chernoff Tail Bound for Sub-Gaussians)
The optimized Chernoff tail bound for a sub-Gaussian X with parameter σ2 and mean µ

will be

P(X − µ ≥ ϵ) ≤ exp(− ϵ2

2σ2
).

Proof
P(X − µ ≥ ϵ) ≤ e−tϵMX−µ(t) (Chernoff’s Bounds)

≤ exp(
t2σ2

2
− tϵ) (Definition of Sub-Gaussians)

≤ exp(inf
t>0

t2σ2

2
− tϵ) (exp is increasing)

= exp(− ϵ2

2σ2
) (t∗ =

ϵ

σ2
)

■

Corollary 3.4 (Chernoff-based Concentration Inequality for Sub-Gaussians)
If x1, · · · , xn are i.i.d. samples for sub-Gaussian X with parameter σ2 and mean µ, we

have the following error bound on their empirical mean µ̂n = 1
n

∑n
i=1 xi:

P(µ̂n − µ ≥ ϵ) ≤ exp(−nϵ
2

2σ2
).
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4 Model-based Statistical Learning

4 Model-based Statistical Learning

This section covers exponential families, maximum likelihood, method of moments and

maximum entropy principle, which overlaps statistics. For more detail, please refer to my note

on Advanced Statistics directly.

4.1 Information Theory (Braverman, 2011; Pillow, 2018)

Definition 4.1 (Entropy)
Given a probability vector q = [q1, · · · , qk] for a discrete random variable X , the (Shan-

non) entropy of X is defined as

Hq(X) =
k∑

i=1

qilog
1

qi
= −Eqlogq.

Note on Entropy is simply the negative expected loglikelihood.

Note on The entropy value is always non-negative and concave.

Note on The entropy measures the uncertainty in a given distribution. Moreover, the entropy is

upper-bounded by logk (Jensen’s Inequality). Particularly, the upper-bound is achieved by the

discrete uniform distribution, i.e., q1 = · · · = qk = 1
k . This can be proved by solving the entropy

maximization problem:

max
q∈Rk

k∑
i=1

qilog
1

qi

s.t.
k∑

i=1

qi = 1,

qi ≥ 0, i = 1, · · · , k.

Definition 4.2 (Conditional Entropy)

Definition 4.3 (Joint Entropy)

Note on Cross-entropy is also the negative expected loglikelihood, and is not calculated under

its truth, but under some other distribution.

4.2 Maximum Entropy Principle

Definition 4.4 (Empirical Distribution)
Suppose we have n observations such as x1, · · · , xn from an unknown distribution p. The

empirical distribution is defined as p̃ = 1
n

∑n
i=1 1(x = xi).
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4 Model-based Statistical Learning

Definition 4.5 (Maximum Entropy Principle)
Given samples x1, · · · ,xn, we want to find a model in a set of probability distributions

Mϕ :=

{
q ∈ PX : Eθ̂[ϕ(x)] =

1

n

n∑
i=1

ϕ(xi)

}
,

conduct the inference and base the decision on the distribution maximizing the Entropy

function:

argmax
q∈Mϕ

Hq(X) :=
∑
x∈X

q(x) log
1

q(x)
.

Note on This principle chooses the most uncertain model based on the given set M .

Theorem 4.1
The distribution that maximizes the entropy is an exponential family model with feature

function ϕ.

Proof Consider the maximum entropy problem

max
q∈R|X|

∑
x∈X

qxlog
1

qx
= −

∑
x∈X

qxlogqx

s.t.
∑
x∈X

qxϕ(x) = µ̂,

∑
x∈X

qx = 1,

qx ≥ 0,x ∈ X ,
as a problem without inequality constraints, i.e.,

max
q∈R|X|

−
∑
x∈X

qxlogqx

s.t.
∑
x∈X

qx

ϕ(x)
1

 =

µ̂
1

 .
Next we consider its Lagrangian problem

L(q,γ) =
∑
x∈X

qx

(
−logqx − ϕ(x)⊤γ1:k − γk+1

)
+ µ̂⊤γ1:k + γk+1,

the stationary KKT condition

∇qxL(q,γ) = −logq∗x − ϕ(x)⊤γ1:k − γk+1 + 1 = 0

leads to

q∗x = exp
(
−ϕ(x)⊤γ1:k − γk+1 + 1

)
≥ 0.

Thus, q∗x is also the optimal solution to the original problem. Moreover,

q∗x ∝ exp
(
−ϕ(x)⊤γ1:k

)
leads to

q∗x =
exp

(
−ϕ(x)⊤γ1:k

)∑
x∈X exp (−ϕ(x)⊤γ1:k)
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4 Model-based Statistical Learning

due to the constraint that probability qx’s add up to 1. ■

Note on Suppose Ω = {0, 1} and ϕ(x) = x, then the maximum entropy principle leads to a

binomial distribution. Suppose Ω = (−∞,∞) and ϕ(x) = [x, x2]⊤, then the maximum entropy

principle leads to a Gaussian distribution.

4.3 Maximum Relative Entropy Principle (Meila, 2012, Lec. 8)

Definition 4.6
Based on the logic of maximum entropy principle, suppose we also have a prior distribution

q0.

4.4 Minimum KL-Divergence

Definition 4.7 (Kullback-Leibler Divergence)
LetX be a random variable with possible outcomesX and let P andQ be two probability

distributions on X . The KL-Divergence of P from Q is defined as:

KL[P ||Q] =
∑
x∈X

p(x)logb
p(x)

q(x)
= Ep log

p

q
,

KL[P ||Q] =

∫
X
p(x)logb

p(x)

q(x)
dx.

Note on KL-Divergence captures how much a model distribution function differs from the true

distribution of the data. However, since KL-Divergence is asymmetric in (p, q). We should not

call it as the ‘distance’ between two distributions (Nowak, 2009).

Note on Perspective from Statistics (halvorsen, 2016) If we have two hypothesis regarding

which distribution is generating the data X , e.g., P and Q. Then p(x)
q(x) is the likelihood ratio

for testing H0: Q against H1: P . Since KL-Divergence KL[P ||Q] is the expected value of the

loglikelihood ratio under the alternative hypothesis, so it is a measure of the difficulty of this test.

The asymmetry of KL-Divergence actually reflects the asymmetry between null and laternative

hypothesis.

For example, let P be the t1-distribution and Q be the standard normal distribution. Then

KL(P ||Q) ≈ ∞,

KL(Q||P ) ≈ 0.26.

That is, if the null model is normal but the data is generated from t-distribution, then it is quite

easy to reject the null! The logic here is that data from t-distribution do not look like normal.

However, if the null is t and data is normal. Normal distributed data could look like t data.

Corollary 4.1 (KL-Divergence and Entorpy (Mao, 2019))
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Lemma 4.1
KL-Divergence is always non-negative. Moreover, KL(p||q) = 0 iff p = q.

Proof By Gibbs’ Inequality. ■

Lemma 4.2 (KL-Divergence’s Convexity (Soch, 2020))
KL-Divergence is convex in the pair of probability distributions (p, q), i.e.,

KL[λp1 + (1− λ)p2||λq1 + (1− λ)q2] ≤ λKL[p1||q1] + (1− λ)KL[p2||q2],

where (p1, q1) and (p2, q2) are two pairs of probability distributions and 0 ≤ λ ≤ 1.

Moreover, KL-divergence attains the minimum 0 if p = q.

Proof Firstly, we show that KL-Divergence is bi-convex of p, q, i.e., it is a convex function of

p for a fixed q and vice versa,

KL[λp1 + (1− λ)p2||q1] ≤ λKL[p1||q1] + (1− λ)KL[p2||q1],

KL[p1||λq1 + (1− λ)q2] ≤ λKL[p1||q1] + (1− λ)KL[p1||q2]

on the basis of xlogx’s convexity. Next we can prove the convexity from bi-convexity. ■

4.5 Connections

4.5.1 Maximum Entropy and MLE (Lacoste-Julien, 2022)

Theorem 4.2 (Maximum Entropy v.s. MLE)
The maximum entropy problem overMϕ is the dual problem to the MLE for the exponential

family with feature function ϕ.

Proof Suppose we replace the Lagrangian problem with q∗x, the dual of the maximum entropy

problem can be written as

min
γ
log

(∑
x∈X

exp
(
−ϕ(x)⊤γ1:k

))
+ µ̂⊤γ1:k.

■

4.5.2 Minimum KL-Divergence and MLE (Lacoste-Julien, 2022)

Theorem 4.3
Let {qθ}θ∈Θ be a parametric family of distributions, and suppose pn(x) is the empirical

pdf from n samples, MLE is minimizing KL-Divergence, i.e.,

argmin
θ∈Θ

KL(pn||qθ) = argmax
θ

p(x|θ).
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5 Model-free Machine Learning

Proof
argmin

θ
KL(p||q) = argmin

θ
Ex∼p

[
log

p(x)

q(x)

]
⇐⇒ argmin

θ
Ex∼p [−logq(x)]

⇐⇒ argmax
θ

Ex∼p [logq(x)]

■

4.5.3 Minimum KL-Divergence and Maximum Entropy

Theorem 4.4 (Minimum KL-Divergence and Maximum Entropy)
The model with maximum entropy is equivalent to the minimum KL divergence to the

uniform distribution.

5 Model-free Machine Learning

Compared to model-based learning, here the underlying distribution is unknown. We

introduce the theory of supervised learning in this section. In addition, we focus on non-

asymptotic rather than asymptotic analysis. Here we provide convergence guarantees without

having the number of observations n go to infinity. A key tool for proving such guarantees is

uniform convergence (Schramm, 2022, Ch. 4), e.g.,

P[L̂(f)− L(f) ≤ ϵ] ≥ 1− δ.

In other words, the probability that the difference between empirical loss and population loss is

larger than ϵ is at most δ.

5.1 Empirical Risk Minimization

Definition 5.1 (Loss Function)
A standard goal in supervised learning is to minimize the averaged prediction loss ℓ :

Y × Y → R≥0 where ℓ(ŷ, y) measures the loss suffered under prediction ŷ for actual

label y.

Note on Example of Loss Function
Squared-error loss: ℓ2(ŷ, y) = (ŷ − y)2,
0-1 loss: ℓ0/1(ŷ, y) = I(ŷ ̸= y).

Absolute loss: ℓ = |f(x)− y|.
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5 Model-free Machine Learning

Definition 5.2 (Population Risk Minimization)
Given ℓ, the supervised learning goal is to find a prediction function f ∈ F to minimize

the expected loss under distribution PX,Y , i.e., population risk:

min
f∈F

L(f) = EPX,Y
[ℓ(f(X), Y )].

Let f∗ denotes the function with minimum population risk, i.e., f∗ = argminf∈F L(f).

Note on This problem cannot be solved, since we do not know PX,Y .

Definition 5.3 (Empirical Risk Minimization)
Given loss function ℓ and training data {(x1, y1), · · · , (xn, yn)}, the empirical risk min-

imization (ERM) approach finds the prediction rule f̂ ∈ F minimizing the empirical

expected loss or empirical risk:

min
f∈F

L̂(f) =
1

n

n∑
i=1

ℓ(f(xi), yi).

Let f̂n denotes the function with minimum empirical risk, i.e., f̂n = argminf∈F L̂(f).

Moreover, the expectation of empirical risk is exactly the population risk (Danica, 2018),

i.e.,

E[L̂(f)] = L(f).

Proof

E[L̂(f)] = E[
1

n

n∑
i=1

ℓ(f(xi), yi)]

=
1

n

n∑
i=1

∫
ℓ(f(xi), yi) dPxi),yi

=
1

n

n∑
i=1

L(f) = L(f).

■

Note on The least squares problem is exactly the adoption of ERM with squared-error loss and

linear model.

Definition 5.4 (Generalization Risk)

The generalization risk of a prediction function f̂ ∈ F is defined as the difference between

its empirical and population risks:

ϵgen(f̂) = L(f̂)− L̂(f̂).

Note on If the loss function is bounded, the generalization risk of f∗ can be bounded byO( 1√
n
)

via Hoeffding’s inequality (Schramm, 2022, Ch. 4).
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Definition 5.5 (Excess Risk)

The excess risk of a prediction function f̂n ∈ F is defined as the difference between its

population risk and the population risk of optimal f∗:

ϵexcess(f̂n) = L(f̂n)− L(f∗)

= L(f̂n)− L̂(f̂n)︸ ︷︷ ︸
Gen. Risk for f̂n

+ L̂(f̂n)− L̂(f∗)︸ ︷︷ ︸
≤0

+ L̂(f∗)− L(f∗)︸ ︷︷ ︸
Gen. Risk for f∗

.

Note on The excess risk of every function in F is non-negative, but the generalization risk may

be negative.

Note on While f∗ is a deterministic function, f̂n is a random function affected by the randomness

of the training samples.

Note on A central goal of learning theory is to bound the excess risk.

5.2 Finite Hypothesis Sets & Uniform Convergence Bounds

Theorem 5.1 (Excess Risk Bound for Finite Function Sets with Realizability Assumption)
Given

1. 0-1 loss: ℓ0/1(ŷ, y) = I(ŷ ̸= y),

2. realizability assumption: there exists a realizable scenario where L(f∗) = 0,

3. and a finite function set F = {f1, · · · , ft} with t functions,

the population risk bound holds for the ERM solution f̂ with prob at least 1− δ:

ϵexcess(f̂) = L(f̂) ≤
log t+ log 1

δ

n
.

Proof Firstly, the realizability assumption implies that L̂(f̂) = 0. Since L̂(f̂) ≤ L̂(f∗) = 0

(Cuong, 2019), and the equality holds since S is a sample from PX,Y .

For ϵ ≥ 0, define Fϵ = {f ∈ F : L(f) ≥ ϵ}. Then our goal is to bound the probability

P(f̂ ∈ Fϵ), i.e.,

P(f̂ ∈ Fϵ) = P(∃f ∈ Fϵ : L̂(f) = 0).

If we assume f ∈ Fϵ, then given the 0/1 loss we have Why?

P(L̂(f) = 0) = (1− L(f))n ≤ (1− ϵ)n ≤ e−nϵ.

Then we use the union bound to show

P(∃f ∈ Fϵ : L̂(f) = 0) ≤
∑
f∈Fϵ

P(L̂(f) = 0) ≤ |Fϵ|(1− ϵ)n ≤ te−nϵ.

That is,

P(f̂ ∈ Fϵ) ≤ te−nϵ → P(L(f̂) ≥
log t+ log 1

δ

n
) ≤ δ.

■

Note on The risk bound is based on two restrictive assumptions: the realizability condition and
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5 Model-free Machine Learning

the finiteness of the hypothesis set F .

Theorem 5.2 (Excess Risk Bound for Finite Function Sets without Realizability Assumption)
Given

1. 0-1 loss: ℓ0/1(ŷ, y) = I(ŷ ̸= y),

2. and a finite function set F = {f1, · · · , ft} with t functions,

the excess risk bound holds for the ERM solution f̂ with prob at least 1− δ:

ϵexcess(f̂) ≤

√
2 log t+ 2 log 2

δ

n
= O(

√
log(t/δ)

n
).

Proof The second part of excess risk is negative since f̂n is a minimizer of L̂. This allows us

to write
ϵexcess(f̂) ≤ |L(f̂)− L̂(f̂)|︸ ︷︷ ︸

Gen. Risk for f̂

+ |L̂(f∗)− L(f∗)|︸ ︷︷ ︸
Gen. Risk for f∗

≤ 2 sup
f∈F
|L(f)− L̂(f)|.

Thus, if supf∈F |L(f)− L̂(f)| is small, i.e., supf∈F |L(f)− L̂(f)| ≤ ϵ
2 , then excess risk is less

than ϵ, i.e., ϵexcess(f̂) ≤ ϵ.
In other words, given the best population and empirical risk functions f∗, f̂ ∈ F , the

probability of an ϵ-large excess risk is bounded as:

P(L(f̂)− L(f∗) ≥ ϵ) ≤ P(sup
f∈F
|L(f)− L̂(f)| ≥ ϵ

2
),

i.e.,

P(ϵexcess ≥ ϵ) ≤ P(sup
f∈F
|ϵgen| ≥

ϵ

2
).

P(sup
f∈F
|L(f)− L̂(f)| ≥ ϵ

2
) = P( sup

1≤i≤t
|L(fi)− L̂(fi)| ≥

ϵ

2
) (Finite function set)

≤
t∑

i=1

P(|L(fi)− L̂(fi)| ≥
ϵ

2
) (Union bound)

≤
t∑

i=1

2 exp

(
−2n(ϵ/2)2

(1− 0)2

)
= 2t exp

(
−nϵ

2

2

)
(Hoffeding’s Inequality)

Thus, if we define δ = 2t exp
(
−nϵ2

2

)
, it turns out that ϵ =

√
2 log(2t/δ)

n , which completes

the proof:

P

(
ϵexcess(f̂) ≥

√
2 log(2t/δ)

n

)
≤ δ.

■

Note on Difference between bounds with and without realizability assumption
The O( 1n) risk bound in the realizable case (noiseless setting) is vanishing faster than the

O( 1√
n
) bound in the non-realizable case (noisy setting).

In learning theory, the risk bounds that decay with O( 1n) are called fast rates bounds,

13
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which require extra assumptions on the learning setting, e.g. realizability or norm-based

regularization.

5.3 Rademacher Complexity

5.3.1 Definitions of Rademacher Complexity

Definition 5.6 (Rademacher Random Variable)
A Rademacher r.v. σ is defined as uniformly distributing over {−1,+1}, i.e.,

P(σ = 1) = R(σ = −1) = 1

2

.

Note on Application To get rid of the virtual dataset, we use independent Rademacher r.v.

σ1, · · · , σn. Due to the symmetry, the following equations hold:

Xi −X ′
i
dist.
= σi(Xi −X ′

i)

⇒ 1

n

n∑
i=1

(Xi −X ′
i)

dist.
=

1

n

n∑
i=1

(σiXi − σiX ′
i)

⇒LS(f)− LS′(f)
dist.
=

1

n

n∑
i=1

(σiXi − σiX ′
i).

Definition 5.7 (Rademacher Complexity)
For a function set H and Rademacher variables in σ = [σ1, · · · , σn], we define H’s

Rademacher complexity as

Rn(H) := ES,σ[sup
h∈H

1

n

n∑
i=1

σih(Xi)].

Note on Motivation from binary classification (Chen, 2013, Lec. 9) Suppose f is a classification

function which maps data xi to its label σi ∈ {−1, 1}. Since f is dependent on σi, to measure

how wellH can correlate with random noise, we take the expectation of the correlation over σi,

i.e., Rademacher complexity. This intuitively measures the expressiveness of H. For example,

|H| = 1 where we only have one choice for a hypothesis, our expectation equals 0 since the max

term disappears; and |H| = 2n whereH shatters S, our expectation equals 1 since there always

exists a hypothesis matching any set of σi’s. That is, this measure must fall between 0 and 1.

Corollary 5.1 (Basic Properties of Rademacher Complexity)
1. Monotonicity. IfH1 ⊆ H2, then Rn(H1) ≤ Rn(H2).

2. Singleton Set. IfH = {h} contains only one function, then Rn(H) = 0.

3. Scalar Product. If cH = {ch : h ∈ H}, then Rn(H = |c|Rn(H).
4. Lipschitz Composition. If g : R→ R is a ρ-Lipschitz function, i.e.,

∀z, z′ ∈ R : |g(z)− g(z′)| ≤ ρ|z − z′|,

14



5 Model-free Machine Learning

then Rn(g ◦ H ≤ ρRn(H).
5. Convex Hull. For a function setH = {h1, · · · , h2}, we define its convex hull:

convex-hull(H) := {
t∑

i=1

αihi : α1, · · · , αt ≥ 0,
t∑

i=1

= 1}.

Then, Rn(convex-hull(H)) = Rn(H).

Proof
■

Definition 5.8 (Empirical Rademacher Complexity)
For a function set H, Rademacher variables in σ = [σ1, · · · , σn] and a fixed dataset

S = {x1, · · · , xn}, we defineH’s empirical Rademacher complexity as

R̂n(H) := Eσ[sup
h∈H

1

n

n∑
i=1

σih(xi)].

In other words,

Rn(H) = ES [R̂n(H)].

5.3.2 Bounds of Rademacher Complexity

Lemma 5.1 (Difference of Rademacher Complexity(Liao, 2020) )
Suppose the loss function is bounded as 0 ≤ ℓ(y, ŷ) ≤ c. For any ϵ,

P(R̂n(H)−Rn(H)) ≤ exp(−2nϵ2/c2),

P(Rn(H)− R̂n(H)) ≤ exp(−2nϵ2/c2).

Proof According to the definition of R̂n(H), any change of one of the samples, e.g., xi, would

change R̂n(H) by at most c/n. Therefore, we could apply the McDiarmid’s inequality to obtain

both two inequations. ■

Lemma 5.2 (Massart Lemma )
Suppose that H = {h1, · · · , ht} is a finite set of t functions. Also, suppose that for every

h ∈ H and dataset S = {x1, · · · , xn} the following holds:

1

n

n∑
i=1

h(xi)
2 ≤M.

Then, the following bound on the empirical Rademacher complexity holds:

R̂n(H) ≤
√

2M log t

n
.

Proof Slide 14 ■

Note on Massart lemma shows that the Rademacher complexity of a finite function set of size t

is bounded by O(
√

log t
n ).

15
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Corollary 5.2 (Empirical Rademacher Complexity of ℓ2-Norm-bounded Linear Functions)
Consider the following set of ℓ2-norm-bounded linear functions:

H = {hw(x) = w⊤x : ||w||2 ≤M}.

Then for a dataset S = {x1, · · · ,xn}, we have the following bound on the empirical

Rademacher complexity:

R̂n(H) ≤
M maxi ||xi||2√

n
.

Corollary 5.3 (Empirical Rademacher Complexity of ℓ1-Norm-bounded Linear Functions)
Consider the following set of ℓ1-norm-bounded linear functions on a d-dimensional x ∈
Rd:

H = {hw(x) = w⊤x : ||w||1 ≤M}.

Then for a dataset S = {x1, · · · ,xn}, we have the following bound on the empirical

Rademacher complexity:

R̂n(H) ≤M max
i
||xi||∞

√
2 log(2d)

n
.

Proof Slide 14 ■

5.3.3 Rademacher Complexity of ReLU-based Neural Nets

Definition 5.9 (Frobenius Norm)
Given a matrix W ∈ Rd×t, we define its Frobenius norm as

||W ||F =

√√√√ d∑
i=1

t∑
j=1

w2
ij .

Definition 5.10 (ReLU Function)
The ReLU function is defined as ψReLU (x) = max{0, x}.

Corollary 5.4 (Rademacher Complexity of ReLU-based Nueral Nets)
Consider the following set of L-layer neural nets with ReLU activation function:

H = {hw(x) =W}

TBD

5.4 Infinite Hypothesis Sets

Note that we still have

P(L(f̂)− L(f∗) ≥ ϵ) ≤ P(sup
f∈F
|L(f)− L̂(f)| ≥ ϵ

2
),

16
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i.e.,

P(ϵexcess ≥ ϵ) ≤ P(sup
f∈F
|ϵgen| ≥

ϵ

2
),

when the hypothesis set infinite. However, we cannot use Hoffeding’s inequality directly since

the hypothesis set infinite. We firstly bound the worst-case generalization risk Gn and use this

bound to bound the excess risk.

Definition 5.11 (Worst-case Generalization Risk)
Given a random dataset of size n, the worst-case generalization risk is defined as

Gn := sup
f∈F

L(f)− L̂(f).

Lemma 5.3 (Concentration Bound for Worst-case Generalization Risk)
Suppose the loss function is bounded as 0 ≤ ℓ(y, ŷ) ≤ c. Consider the worst-case

generalization riskGn as a function of independent empirical samplesX1, · · · , Xn. Then

P(Gn ≥ E[Gn] + ϵ) ≤ exp(−2nϵ2

c2
).

Particularly, given the 0-1 loss function, i.e., c = 1, we have

P(Gn ≥ E[Gn] + ϵ) ≤ exp(−2nϵ2).

Proof According to the definition of L̂, any change of one of the samples, e.g., ℓ(f(xi), yi),

would change L̂ by at most c/n. And L does not depend on samples. Therefore, we could apply

the McDiarmid’s inequality to obtain the inequation. ■

Lemma 5.4 (Symmetrization Bound for Worst-case Generalization Risk)
Introducing a virtual dataset S′ = {X ′

1, · · · , X ′
n} including n new samples independent

from dataset S and denote L(f) = ES′ [L̂S′(f)]. The expected worst-case generalization

risk can be bounded as

E[Gn] ≤ ES,S′

[
sup
f∈F

L̂S′(f)− L̂S(f)

]
(Symmetrization Bound)

≤ 2ES,σ

[
sup
f∈F

1

n

n∑
i=1

σiℓ(f(xi, yi)

]
= 2Rn(H).

17
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Proof

E[Gn] = ES

[
sup
f∈F

L(f)− L̂S(f)

]

= ES

[
sup
f∈F

ES′ [L̂S′(f)]− L̂S(f)

]

= ES

[
sup
f∈F

ES′

[
L̂S′(f)− L̂S(f)

]]

≤ ES

[
ES′

[
sup
f∈F

L̂S′(f)− L̂S(f)

]]

= ES,S′

[
sup
f∈F

L̂S′(f)− L̂S(f)

]
,

where the inequality holds due to Jensen’s inequality.

ES,S′

[
sup
f∈F

L̂S′(f)− L̂S(f)

]
= ES,S′

[
sup
f∈F

1

n

n∑
i=1

[X ′
i −Xi]

]

= ES,S′,σ

[
sup
f∈F

1

n

n∑
i=1

[σiX
′
i − σiXi]

]
(Property of Rademacher r.v.)

≤ ES′,σ

[
sup
f∈F

1

n

n∑
i=1

σiX
′
i

]
+ ES,σ

[
sup
f∈F

1

n

n∑
i=1

−σiXi

]
(Why?)

= 2ES,σ

[
sup
f∈F

1

n

n∑
i=1

σiXi

]
■

Lemma 5.5
Let P be a probability distribution over a domain space X . The Rademacher complexity

of the function class F w.r.t. P for i.i.d. sample S = (x1, · · · , xn) with size n is Rn(F).
We have

ES∼Pn [sup
f∈F

(Ex∼P [f(x)]−
1

n

n∑
i=1

f(xi))] ≤ 2Rn(F).

Proof Construct another independent sample S′ = {x′1, · · · , x′n}, we have Why?

Ex∼P [f(x)] = ES′∼Pn [
1

n

n∑
i=1

f(x′i)].

TBD. ■

Note on This theorem shows that one can bound the maximum error in estimating the mean of

any function f using the Rademacher complexity of the set of functions F .
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Theorem 5.3 (Excess Risk Bound via Rademacher Complexity(Chen, 2013; Liao, 2020))
For a hypothesis set F , define H = {[x, y]→ ℓ(f(x), y) : f ∈ F} to be the composition

of loss function ℓ with the hypotheses in F . If |f(x)− f(y)| ≤ c,

P(E[f(x)]− 1

n

n∑
i=1

f(xi) ≥ 2Rn(H) + ϵ) ≤ exp(−2nϵ2/c2),

P(E[f(x)]− 1

n

n∑
i=1

f(xi) ≥ 2R̂n(H) + 3ϵ) ≤ 2 exp(−2nϵ2/c2).

Proof We denote event C as

R̂n(H) ≥ Rn(H)− ϵ.

And from Lemma 5.3.2, we know that P ≥ 1− exp(−2nϵ2/c2). ■

Corollary 5.5 (Excess Risk Bound via Rademacher Complexity given 0-1 loss(Farnia, 2023))
Particularly, under 0-1 loss functions, with probability at least 1− δ,

L(f̂)− L(f∗) ≤ 4Rn(H) +
√

2 log(2/δ)

n
,

L(f̂)− L(f∗) ≤ 4R̂n(H) +
√

50 log(4/δ)

n
.

Proof
P(L(f̂)− L(f∗) ≥ ϵ) ≤ P(sup

f∈F
|L(f)− L̂(f)| ≥ ϵ

2
)

≤ P(Gn ≥
ϵ

2
) + P(G′

n ≥
ϵ

2
)

= P(Gn − E[Gn] ≥
ϵ

2
− E[Gn]) + P(G′

n − E[G′
n] ≥

ϵ

2
− E[G′

n])

≤ exp(−2n( ϵ
2
− E[Gn])

2) + exp(−2n( ϵ
2
− E[G′

n])
2) (McDiarmid’s Inequality)

≤ 2 exp(−2n( ϵ
2
− 2Rn(H))2) (Lemma 5.3.1 + Lemma 5.4)

whereG′
n is defined for the negative loss. If we define δ = 2 exp(−2n( ϵ2 − 2Rn(H))2), then we

have ϵ = 4Rn(H) +
√

2 log(2/δ)
n , i.e.,

P(L(f̂)− L(f∗) ≤ 4Rn(H) +
√

2 log(2/δ)

n
) ≤ δ.

■

5.5 VC Dimension

Definition 5.12 (Shattering Coefficient)
Given a function set F whose members map a feature vector x ∈ X to Y = {0, 1}, we

define shattering coefficient s(F , n) as the maximum number of different label assignment

19



5 Model-free Machine Learning

over datasets of size n, i.e., {x1, · · · ,xn} ∈ X n,

s(F , n) := max
x1,··· ,xn∈X

card({[f(x1), · · · , f(xn)] : f ∈ F}),

where card denotes cardinality of the set, i.e., the number of elements in the set.

Property 5.1 (Properties of Shattering Coefficient (“Shattered Set” 2021))
s(F , n) ≤ 2n for all n, note that 2n is the largest cardinality for a set with n

elements in {0, 1}.
If s(F , n) = 2n, that means there is a set of cardinality n, which can be shattered

by F
If s(F , N) < 2N for some N > 1, then s(F , n) < 2n for all n ≥ N

Corollary 5.6 (Massart Lemma applied to Shattering Coefficient)
Consider a hypothesis set F with boolean output in Y = {0, 1}. Then for every dataset S

of size n, we have

R̂n(F) ≤
√

2 log s(F , n)
n

.

Proof The proof is based on Lemma 5.3.2. Since Y = {0, 1}, M = 1. The logic is a little

weird here, this may comes from different expressions of theorems. ■

Definition 5.13 (VC Dimension)
Consider a hypothesis setF with boolean output inY = {0, 1}. Its VC dimension V C(F)
is defined as the size n of the largest dataset S that can be shattered by F:

V C(F) = sup{n : s(F , n) = 2n}.

Note on Examples
The class of one dimensional half spaces A1 = {(−∞, a]|a ∈ R} has s(F , n) = n + 1,

and so V C(F) = 1 (Martin Wainwright, 2009).

The class of half open intervals F = {x → 1(x ∈ (b, a]) : b < a ∈ R} has s(F , n) =
n(n+1)

2 + 1. To see this, WLOG, suppose x1 ≤ · · · ≤ xn. When n = 1, the outcomes can

be {1, 0} since we can find an interval based on b < a ∈ R including and excluding x1.

When n = 2, the outcomes can be {11, 10, 01, 00}. When n = 3, the outcomes does not

include 101. Since if (b, a] include x1 and x3, it must include x2 too. So V C(F) = 2

(Martin Wainwright, 2009).

The class of binarized sinus functions F = {x → 1(sin(wx) ≤ 0) : w ∈ R} and the

class of binarized convex functions F = {x→ 1(g(x) ≤ 0) : g convex} on x ∈ R2 have

infinite VC-dimension.

The set of d-dimension linear classification rules

F = {1(wTx ≥ 0) : w ∈ Rd}.
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have V C(F) = d.

Lemma 5.6 (Sauer’s Lemma)
Consider a function setF with VC dimension V C(F) = d. Then, for every integer n ∈ N,

we have

s(F , n) ≤
d∑

i=1

Ci
n.

Corollary 5.7
If n > d, s(F , n) ≤ (ned )d.

Proof Sauer’s lemma provides a non-trivial result if n > d.

Case 1 d ≥ n: we have
∑d

i=1C
i
n = 2n

Case 2 d < n: we have
∑d

i=1C
i
n ≤ (ned )d, which is derived by

(
d

n
)ds(F , n) ≤

d∑
i=1

Ci
n(
d

n
)d

≤
d∑

i=1

Ci
n(
d

n
)i

=
d∑

i=1

Ci
n(
d

n
)i1n−i

≤
n∑

i=1

Ci
n(
d

n
)i1n−i

= ((1 +
1

d/n
)n/d)d ≤ ed

.

■

Theorem 5.4 (Rademacher Complexity Bound with VC-dimension)
Consider a hypothesis set F with boolean output in Y = {0, 1}, whose VC dimension is

V C(F) = d. Then for every dataset S of size n, we have

R̂n(F) ≤
√

2d(log(n/d) + 1)

n
.

Proof A direct result of Sauer’s lemma. ■

Corollary 5.8 (Excess Risk Bound for 0-1 loss via VC-dimension)
Consider a hypothesis set F with boolean output which has V C(F) = d. Suppose the

loss function is the 0-1 loss. Then, with probability at least 1− δ,

L(f̂)− L(f∗) ≤
√

32d(log(n/d) + 1)

n
+

√
2 log(2/δ)

n
.

Proof A direct result of Theorem 5.5 and Corollary 5.4. ■
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6 Kernel Methods (Mairal and Vert, 2020; Francis Bach, 2021)

In addition to minimize the excess risk, we also want to minimize the approximation error:

L(f̂) = L(f̂n)− L(f∗)︸ ︷︷ ︸
Excess Risk

+ L(f∗)︸ ︷︷ ︸
Approximation Error

.

6.1 Kernels

Definition 6.1 (Feature map)
The feature map ϕ : Rd → Rm used in kernel methods maps X ∈ Rd to an often

high-dimensional space m≫ d.

Note on Examples
Degree-m scalar polynomial: ϕ(x) = [x, x2, · · · , xm].

Counting features for a string: ϕ(x) = [#(substring s(i) in x)]

Note on Additional costs The feature map is useful in extending the linear models to non-linear

models. Suppose we have a linear model, e.g.,

min
w∈Rd

1

n

n∑
i=1

(
w⊤xi − yi

)2
.

Then the updated model will be

min
w∈Rm

1

n

n∑
i=1

(
w⊤ϕ(xi)− yi

)2
.

However, including m decision variables brings more computational costs.

Definition 6.2 (Positive Semi-definite Kernels)
A function k : Rd×Rd → R is defined as a kernel function, if for every integer t ∈ N and

vectors x1, · · · ,xt, the matrix K ∈ Rt×t with the (i, j)-entry k(xi,xj) will be positive

semi-definite:

K :=


k(x1,x1) · · · k(x1,xn)

. · · · .

k(xn,x1) · · · k(xn,xn)

 ⪰ 0.

Note on This provides a way to check positive semi-definiteness, i.e., if for all x1, · · · ,xn in Rd

and c1, · · · , cn, we have
n∑

i=1

n∑
j=1

cicjk(xi,xj) ≥ 0.

Then k is positive semi-definite.
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Lemma 6.1
k : X ×X → R is a kernel function iff there exists a feature map ϕ : Rd → Rm such that

for every x,x′:

k(x,x′) = ⟨ϕ(x), ϕ(x′)⟩.

Note on Example
1. Linear kernel: k(x,x′) = ⟨x,x′⟩ = x⊤x′. Since (Zhanxiong, 2015).

n∑
i=1

n∑
j=1

cicjk(xi,xj) =
n∑

i=1

n∑
j=1

cicj

d∑
k=1

xi;kxj;k

=
n∑

i=1

n∑
j=1

d∑
k=1

cicjxi;kxj;k

=
d∑

k=1

(
n∑

i=1

cixi;k)(
n∑

j=1

cjxj;k)

=

d∑
k=1

(

n∑
i=1

cixi;k)
2 ≥ 0

.

2. Degree-r polynomial kernel: k(x,x′) = (1 + ⟨x,x′⟩)r. Since 1 + ⟨x,x′⟩ is a valid

kernel functions (positive semi-definite), and so does the degree-r polynomial kernel via

Corollary 6.1.

3. Gaussian kernel with bandwidth parameter σ: k(x,x′) = exp(− ||x−x′||22
2σ2 ). This actually

can be rewritten as

k(x,x′) = exp(−||x||
2
2

2σ2
) exp(−||x

′||22
2σ2

) exp(−||⟨x,x
′⟩||22

2σ2
).

And exp(− ||x||22
2σ2 ) exp(− ||x′||22

2σ2 ) satisfies the properties of a kernel function via Corollary

6.1. Moreover, exp(− ||⟨x,x′⟩||22
2σ2 ) =

∑∞
t=0

⟨x,x′⟩t
t!σ2t is the sum of the powers of linear kernel

and a kernel function too.

Property 6.1 (Sum and Product of Kernels )
If k1 and k2 are two valid kernel functions, then their sum, i.e., k = k1 + k2, will

also be a kernel function.

If k1 and k2 are two valid kernel functions, then their product, i.e., k = k1 × k2,
will also be a kernel function.

6.2 Reproducing Kernel Hilbert Space

Definition 6.3 (Reproducing Kernel Hilbert Space (RKHS))
For kernel function k, we define the reproducing kernel Hilbert space (RKHS) H as the

following set of functions

H =

{
f(x) =

t∑
i=1

αik(xi,x) : t ∈ N, α1, · · · , αt ∈ R,x1, · · · ,xt ∈ X

}
.
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Definition 6.4 (Inner Product in an RKHS)

Given two functions f(x) =
∑t

i=1 αik(xi,x), g(x) =
∑t′

j=1 βjk(x
′
j ,x) in the RKHSH

for kernel-k, we define their inner product as

⟨f, g⟩ =
t∑

i=1

t′∑
j=1

αiβjk(xi,x
′
j).

Property 6.2 (Inner Product’s Property in an RKHS)
The RKHS defined for a kernel k coupled with the above inner product will result in a

Hilbert Space, where the followings hold for every f, f1, f2, g ∈ H:

1. Symmetry. ⟨f, g⟩ = ⟨g, f⟩
2. Linearity. For all γ ∈ R: ⟨f1 + γf2, g⟩ = ⟨f1, g⟩+ γ⟨f2, g⟩
3. Positive definiteness. ⟨f, f⟩ ≥ 0 where the equality holds only for f = 0.

Definition 6.5 (Norm in an RKHS)
For a function f(x) =

∑t
i=1 αik(xi,x) in the RKHSH, we define its norm as

||f ||2H = ⟨f, f⟩ =
t∑

i=1

t∑
j=1

αiαjk(xi,xj) = α⊤Kα,

where K ∈ Rt×t has k(xi,xj) as (i, j)-entry.

6.3 Shift-invariant Kernels and Bochner’s Theorem

Definition 6.6 (Shift-invariant Kernel)
A kernel function k : X × X → R is called a shift-invariant kernel if there exists a

function κ : X → R such that for every x,x′ ∈ X :

k(x,x′) = κ(x− x′).

Note on Examples Linear and polynomial kernels are not shift-invariant, but Gaussian kernel

is shift-invariant.

Lemma 6.2 (Euler’s formula)

eiθ = cos θ + i sin θ

Lemma 6.3 (Inner product and Norm of Complex Numbers (mb-, 2016))
The standard inner product of two complex numbers z1, z2 ∈ C is z1z2. And the norm

induced for z = a+ bi is

||z|| =
√
z1z1 =

√
a2 + b2.
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Definition 6.7 (Fourier Transform)

Given a function f : Rd → R, we define its Fourier transform f̂ : Rd → R as

f̂(w) =

∫
f(x) exp(−iw⊤x)dx.

Note on Examples
1. Double-sided exponential (Pauly, 2001). f(t) = e−a|t| with a > 0

F (w) =

∫ 0

−∞
exp(at) exp(−iwt)dt+

∫ ∞

0
exp(−at) exp(−iwt)dt

=
1

a− iw
+

1

a+ iw
=

2a

a2 + w2

2. Gaussian-shape function (Bagla, 2020). κ(x) = exp(− ||x||22
2σ2 )

F (w) =

∫
exp(−

∑d
j=1 x

2
j

2σ2
) exp(−i

d∑
j=1

wjxj)dx

=

d∏
j=1

∫
exp(−

x2j
2σ2

) exp(−iwjxj)dxj

=
d∏

j=1

exp(−
w2
jσ

2

2
)

∫
exp(−( 1√

2σ
xj +

iwjσ√
2
)2)dxj

=
d∏

j=1

exp(−
w2
jσ

2

2
)
√
2σ

∫
exp(−( 1√

2σ
xj +

iwjσ√
2
)2)d(

1√
2σ
xj +

iwjσ√
2
)

=
d∏

j=1

exp(−
w2
jσ

2

2
)
√
2σ
√
π (

∫
exp(−x2)dx =

√
π)

= (
√
2πσ)d exp(−σ

2||w||22
2

)

Property 6.3 (Properties of Fourier Transform)
1. Symthesis (Inverse Fourier transform).

f(x) =
1

(2π)d

∫
f̂(w) exp(iw⊤x)dw

2. Linearity. For any f1, f2, α, β, we have

ˆαf1 + βf2 = αf̂1 + βf̂2

3. Convolution property. Denote the convolution as f ∗ g(z) =
∫
f(x)g(z − x)dx,

then we have
ˆf ∗ g = f̂ ĝ

Note on Examples
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Find F−1( 1
(9+λ2)(4+λ2)

) (Bagla, 2020).

F−1(
1

(9 + λ2)(4 + λ2)
) =

1

5
F−1(

1

22 + λ2
− 1

32 + λ2
)

=
1

20
F−1(

4

4 + λ2
)− 1

30
F−1(

6

9 + λ2
) (Linearity)

=
1

20
exp(−2|x|)− 1

30
exp(−3|x|) (F (exp(−a|x|)) = 2a

a2 + λ2
)

Using convolution property, find F−1( 1
12−7iλ−λ2 ) (Bagla, 2020).

F−1(
1

12− 7iλ− λ2
) = F−1(

1

4− iλ
1

3− iλ
) = F−1(

1

4− iλ
)F−1(

1

3− iλ
)

Theorem 6.1 (Bochner’s Theorem)
A function κ : Rd → R results in a valid shift-invariant kernel k(x,x′) = κ(x − x′) iff

the Fourier transform κ̂ is non-negative everywhere:

∀w ∈ Rd : κ̂(w) ≥ 0.

Note on Examples
1. The gaussian-shape function κ(x) = exp(− ||x||22

2σ2 ) is a kernel function, since κ̂(w) =

(
√
2πσ)d exp(−σ2||w||22

2 ) ≥ 0.

2. The sinc function sinc(x) = sin(πx)
πx is a kernel function, since ˆsinc(w) = 1[−1 ≤ w ≤ 1].

3. The box function b(x) = 1[−1 ≤ x ≤ 1] is not a kernel function, because its Fourier

transform is a multiple of sinc function which could take negative values.

4. Consider the following box functions:

Πb(x) =

1 if |x| ≤ b
2 ,

0 if |x| > b
2 .

We have

fb(x) = Πb ∗Πb =

b− |x| if |x| ≤ b,

0 if b < |x|

as the convolution of two identical Πb. As a result, the Fourier transform of fb will be

the square of Πb’s Fourier transform, i.e., non negative. And Πb’s Fourier transform is

bsinc( b
2πw).

6.4 Representer Theorem
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Theorem 6.2 (Representer Theorem (Simple Version))
Consider solving the ERM problem with the feature function ϕ using the gradient descent

algorithm with stepsize γ, the k + 1th gradient descent update will be

w(k+1) = w(k) − γ∇wL̂(w
k)

= w(k) − 2γ

n

n∑
i=1

(w(k)⊤ − ϕ(xi)− yi)ϕ(xi).

Then, for every k the kth update of the gradient descent method initialized at w(0) = 0

will satisfy the following for some scalars α(k)
1 , α

(k)
n ∈ R:

w(k) =
n∑

i=1

α
(k)
i ϕ(xi).

Note on In other words, the above result shows thatw(k) is a linear combination ofϕ(x1), · · · , ϕ(xn)

at every iteration. When m ≤ n, this result is trivial since the span of n-dimensional vectors

could cover the Rm space. Therefore, if m > n then this result will be non-trivial.

Note on Kernel Trick based on Representer Theorem If w =
∑n

i=1 αiϕ(xi), then for every

x we have

w⊤ϕ(x) =
n∑

j=1

αj⟨ϕ(xj), ϕ(x)⟩,

where ⟨·, ·⟩ denotes the standard inner product. Therefore, if we define the kernel function

k : Rd × Rd → R as k(x,x′) = ⟨ϕ(x), ϕ(x′)⟩ we can rewrite

w⊤ϕ(x) =
n∑

j=1

αjk(xj ,x).

That is, we rewrite the problem into the following optimization problem where K ∈ Rn×n has

k(xi,xj) as (i, j)-entry:

min
α∈Rn

1

n

n∑
i=1

yi − n∑
j=1

αjk(xj ,x)

2

=
1

n
||y −Kα||22.

The kernel trick is useful especially when m ≫ n, i.e., the complexity of ERM problem

dominates sample size n. For example, if ϕ(x) covers all quadratic functions of vector x, then

m = d2 + d Why?. In general, for a degree-r polynomial, the number of variables will be

m = O(dr). On the other hand, the equivalent optimization problem has only n variables, and

as long as we can compute the n×nmatrix K the complexity of the problem will be independent

of m.

Theorem 6.3 (Representer Theorem)
Consider the following ERM problem over an RKHSH that corresponds to kernel k, and

suppose Q is a strictly increasing function:

min
f∈H

1

n

n∑
i=1

ℓ(f(xi), yi) +Q(||f ||H).
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Then, every optimal solution f∗ ∈ H to the above problem satisfies the following for some

real coefficients α1, · · · , αn ∈ R:

f∗(x) =
n∑

j=1

αjk(xj ,x).

That is, this is equal to solve

min
α∈Rn

1

n

n∑
i=1

ℓ(
n∑

j=1

αjk(xj ,xi), yi) +Q(
√
α⊤Kα).

Note on Example of Ridge Regression Ridge regression is the training of a linear model

fw(x) = w⊤x via Least Squares with the additive L2-norm-squared penalty

min
w∈Rd

1

n

n∑
i=1

(w⊤xi − yi)2 + λ||w||22.

Kernel ridge regression is the training of a kernel-based model f ∈ H with squared-error loss

and the additive kernel-norm-squared penalty

min
f∈H

1

n

n∑
i=1

(f(xi)− yi)2 + λ||f ||2H.

Representer theorem implies that there is a solution f∗(x) =
∑n

j=1 αjk(xj ,x) to the problem:

min
α∈Rn

1

n

n∑
i=1

(
n∑

j=1

αjk(xj ,x)− yi)2 + λ
n∑

i=1

n∑
j=1

αiαjk(xj ,xi).

If we denote kernel matrix K = [k(xi,xj)]n×n] and vector y = [y1, · · · , yn], we have the

following equivalent problem:

min
α∈Rn

1

n
||Kα− y||22 + λα⊤Kα.

Note that this is a convex optimization problem. FOC leads to
2

n
K(Kα∗ − y) + 2λKα∗ = 0→ K(K + nλI)α∗ = Ky → α∗ = (K + nλI)−1y.

Note on Example of SVM Consider the SVM problem, which is aL2-regularized ERM problem

with the hinge loss ℓhinge(ŷ, y) = max{0, 1− ŷy}:

min
w∈Rd

n∑
i=1

ℓhinge(w
⊤xi, yi) + λ||w||22.

Note that max{0, 1− z} = max0≤α≤1 α(1− z), the problem can be rewritten as

min
w∈Rd

max
α∈[0,1]n

n∑
i=1

αi(1− yiw⊤xi) + λ||w||22.

The minmax theorem implies that we can swap min and max in the above problem to obtain the

dual problem:

max
α∈[0,1]n

min
w∈Rd

n∑
i=1

αi(1− yiw⊤xi) + λ||w||22.

Note that the objective function regarding w is convex, and achieves its minimum at w∗ =
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1
2λ

∑n
i=1 αiyixi by FOC. The problem can be rewritten as

max
α∈[0,1]n

(
n∑

i=1

αi)−
2

λ
||

n∑
i=1

αiyixi||22

= max
α∈[0,1]n

(
n∑

i=1

αi)−
2

λ

n∑
i=1

n∑
j=1

αiαjyiyj⟨xi,xj⟩
.

In other words, if we define K = [yiyjk(xi,xj)]n×n, the above problem is

max
α∈[0,1]n

1⊤α− 2

λ
α⊤Kα.

6.5 Random Fourier Features

Definition 6.8 (Random Fourier Features)
If feature maps belong to high(or infinite)-dimenisonal spaces, it would be infeasible to

use the map to compute the kernel function, i.e.,

k(x,x′) = ⟨ϕ(x), ϕ(x′)⟩.

However, for a shift-invariant kernel k(x,x′) = κ(x− x′), we have

k(x,x′) =
1

(2π)d

∫
ϕw(x)ϕw(x′) ˆκ(w)dw,

where ϕw(x) = exp(iw⊤x). Assuming κ(0) = 1, then κ̂ is a probability density function.

And we can draw independent samples w1, · · · , wm according to κ̂, the kernel function

can be approximated as

k̂(x,x′) =
1

m

m∑
i=1

ϕwi(x)ϕwi(x).

Then, we can use the random feature ϕ̂(x) = 1√
m
[ϕw1(x), · · · , ϕwm(x)] map to approx-

imate the target shift-invariant kernel:

k̂(x,x′) = ⟨ϕ̂(x), ϕ̂(x′)⟩.

Theorem 6.4 (Approximation Error of Random Fourier Features)
Suppose k is a shift-invariant kernel function. We consider a subset of the resulting RKHS

H where the Fourier coefficients are bounded by C as

HC := {
∫
α(w)κ̂(w)ϕw(x)dw : |α(w)| ≤ C,∀w}.

Consider the norm || · || induced by a distribution q-based inner product ⟨f, g⟩ =

Ex∼q[f(x)g(x)], i.e., ||f ||q =
√∫

q(x)f2(x)dx. We aim to approximate the follow-

ing RKHS-based function f∗ : Rd → R:

f∗(x) =

∫
α(w)ϕw(x)κ̂(w)dw,

where ϕw(x) = exp(iw⊤x). Assuming κ(0) = 1, then κ̂ is a probability density function.

And we can draw independent samples w1, · · · ,wm according to κ̂, the kernel function
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can be approximated as

f̂(x) =
1

n

n∑
i=1

α(wi)ϕwi(x).

Then, with probability at least 1− δ

||f̂ − f∗||q ≤
√
C2

n
+

√
2 log(1/δ)

n
.

Proof Define

h(w1, · · · ,wm) = ||f̂ − f∗||q,

we first apply McDiarmid’s inequality to h. Note that if we consider the two sequences w1:n and

wi
1:n, where wi

1:n’s ith element is different from w1:n’s ith element, and other elements remain

the same. Then

|h(w1:n)− h(wi
1:n)| = |||f̂w1:n − f∗||q − ||f̂wi

1:n
− f∗||q|

≤ ||f̂w1:n − f̂wi
1:n
||q (Triangle inequality)

= || 1
n
(α(wi)ϕwi − α(w′

i)ϕw′
i
)||q

≤ 1

n
||α(wi)ϕwi ||q +

1

n
||α(w′

i)ϕw′
i
||q (Triangle inequality)

≤ 2C

n
(||ϕw||q ≤ 1)

.

Therefore, the application of McDiarmid’s inequality shows that

P(h− E[h] ≥ ϵ) ≤ exp(− nϵ
2

2C2
).

Let δ = exp(− nϵ2

2C2 ), i.e., ϵ = C

√
2 log(1/δ)

n , we have, with prob at least 1− δ,

h− E[h] ≤ C
√

2 log(1/δ)

n
.

Next we find an upper bound of E[h] and proved the bound of h.

E[h] = E[||f̂w1:n − f∗||q]

≤
√

E[||f̂w1:n − f∗||2q ] (Cauchy-Schwarz inequality)

=

√√√√E[|| 1
n

n∑
i=1

[f∗ − α(wi)ϕwi ]||2q ]

=

√√√√ 1

n2

n∑
i=1

E[||f∗ − α(wi)ϕwi ||2q ] (Independence of wi and E[α(wi)ϕwi ] = f∗)

≤

√√√√ 1

n2

n∑
i=1

C2 =
C√
n

.

As a result, with prob at least 1− δ, we have

h = ||f̂ − f∗||q ≤
√
C2

n
+

√
2 log(1/δ)

n
.
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■

7 Online Learning

7.1 Online Learning with Realizability Assumption

Motivation. Previously we assume that training data are drawn randomly from a fixed

distribution and are coming as a batch of size n. However, this may not be true in real world.

Firstly, the distribution generating the data may evolve as time goes by. Secondly, samples are

coming in an online fashion instead of a fixed batch. In this section, we train the model over all

the samples from time t = 0 till the current t = T .

In online learning, we suppose the learning task is formed as a game between the learner

and nature players:

1. At every iteration t, Nature reveals the input xt ∈ X to the learner.

2. Learner outpus a prediction pt ∈ Y .

3. Nature reveals the true label yt ∈ Y , and Learner will suffer a loss ℓ(yt, pt).

4. Learner updates her prediction model.

Definition 7.1 (Cumulative Loss of an Online Learner)
One potential goal is to minimize the cumulative loss of the learner:

CumulativeLoss (T ) =
T∑
t=1

ℓ(yt, pt).

Note on The drawback of the cumulative loss-based evaluation is that if the nature player acts

as an adversary, every learning algorithm will have the same evaluation score.

Definition 7.2 (Regret of an Online Learner)
Given an expert h : X → Y , the regret of the online learner is defined as the extra

cumulative loss of the learner with respect to expert h:

Regret (h) =
T∑
t=1

[ℓ(yt, pt)]−
T∑
t=1

[ℓ(yt, h(xt))].

For a set of experts H, we define the learner’s regret as the worst-case regret for any

expert h ∈ H:

Regret (H) = max
h∈H

Regret (h)

=

T∑
t=1

[ℓ(yt, pt)]−min
h∈H

T∑
t=1

[ℓ(yt, h(xt))]
.

Note on Examples For simplicity, we assume that the loss function is the standard zero-one loss

used in classification.

Consider a binary prediction task with Y = {0, 1} and an adversary nature which always
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generating the opposite label of the learner’s prediction. The cumulative loss of every

learning algorithms will be T at iteration T . Suppose H = {h0, h1} where hi(x) = i,

i.e., hi always outputs the assigned label. The regret with respect to H will be at least T
2 .

Note that

ℓ(yt, 1) + ℓ(yt, 0) = 1,

i.e.,

ℓ(yt, h1(xt)) + ℓ(yt, h0(xt)) = 1.

This is equivalent to
T∑
t=1

[ℓ(yt, h1(xt))] +
T∑
t=1

[ℓ(yt, h0(xt))] = T,

and there must exists hi such that
∑T

t=1[ℓ(yt, hi(xt))] ≤ T
2 .

Consider a binary prediction task withY = {0, 1} and a realizable nature which generates

the label according to an expert h∗ ∈ H : Y = h∗(x). In the reliable case, the

cumulative loss of a learning algorithm is equal to its regret with respect to H. Since

minh∈H
∑T

t=1[ℓ(yt, h(xt))] =
∑T

t=1[ℓ(yt, h
∗(xt))] = 0.

Consider the follow the best expert algorithm, where we arbitrarily choose among

the experts with the best score up to iteration t. Assuming H is a finite set, then the

regret with respect toH could be as large as card(H)− 1.

Consider the Halving algorithm (Mohri et al., 2012, p. 179). At each round, the

Halving algorithm makes its prediction by taking the majority vote over all active

experts. Initially, all experts are active, and by the time the algorithm has converged

to the correct expert. The regret toH is bounded by log2(card(H)), since the active

set is reduced by at least half.

7.2 Online Learning without Realizability Assumption based on Online Convex
Optimization

To analyze non-realizable settings, we introduce a standard framework called online convex

optimization.

Definition 7.3 (Online Convex Optimization)
At each time step t = 1 to T ,

1. Learner chooses model parameters wt ∈ S from a convex set S at iteration t.

2. Nature chooses a convex loss function ft ∈ Fconvex.

3. The learner suffers loss ft(wt).

The goal of the learner is to minimize the regret, i.e.,

Regret(u) =
T∑
t=1

ft(wt)−
T∑
t=1

ft(u),

32



7 Online Learning

Regret(S) = max
u∈S

Regret(u) =
T∑
t=1

ft(wt)−min
u∈S

T∑
t=1

ft(u).

Definition 7.4 (Online Linear Regression)
Consider the squared-error loss ℓ2(ŷ, y) = (ŷ− y)2. The online linear regression setting

is

The nature reveals input vector xt ∈ Rd.

The online learner chooses model parameters wt ∈ Rd.

The nature reveals output yt ∈ R, and the loss value at iteration t is

ft(wt) = ℓ2(w
⊤
t xt, yt) = (w⊤

t xt − yt)2.

And the regret function in this online learnign problem is

Regret(u) =
T∑
t=1

[ft(wt)− ft(u)] =
T∑
t=1

[(w⊤
t xt − yt)2 − (u⊤xt − yt)2].

Definition 7.5 (Online Convex Optimization with Expert Advice)
Consider a general lsos ℓ(ŷ, y) and a set of expertsH = {h1, · · · , hm}. To convexify the

problem, the learner searches for a probability distribution over them experts which means

wt ∈ ∆m where ∆m is the set of all probability distributions onH = {h1, · · · , hm}.
The online learning task is as follows

1. The nature reveals input vector xt ∈ Rd.

2. The online learner chooses wt ∈ Rm.

3. The nature reveals output yt ∈ R and the loss value at iteration t is

ft(wt) = w⊤
t Lt, Lt = [ℓ(h1(xt), yt), · · · , ℓ(hm(xt), yt)].

The regret function in this online learning problem is

Regret(u) =
T∑
t=1

[ft(wt)− ft(u)] =
T∑
t=1

(wt − u)⊤Lt.

7.3 Follow The Leader (FTL) Strategy

Definition 7.6 (Follow The Leader (FTL) Strategy)
Following the best-performing expert up to the current iteration. On the first round output

any w1 ∈ S. On a round t > 1 output

wt+1 ∈ argmin
w∈S

t∑
i=1

ℓi(w).

Note on In an online convex optimization task, the FTL problem is indeed a convex optimization

problem.
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Lemma 7.1 (Regret Bound for FTL)
Given that wt is chosen according to the FTL strategy, we have the following upper-bound

on the FTL learner’s regret at iteration T :

Regret(S) ≤
T∑
t=1

[ft(wt)− ft(wt+1)].

Proof To show the lemma, we only need to prove that for every u ∈ S, we have

Regret(u) =
T∑
t=1

[ft(wt)− ft(u)] ≤
T∑
t=1

[ft(wt)− ft(wt+1)]

⇐⇒
T∑
t=1

ft(wt+1) ≤
T∑
t=1

ft(u)

.

This can be shown by induction. The result for T = 1 follows directly from the definition of

FTL. Suppose that result holds for T , then for every u ∈ S, we have
T+1∑
t=1

ft(wt+1) = ft(wT+1) +
T∑
t=1

ft(wt+1) ≤ ft(wT+1) +
T∑
t=1

ft(u).

Especially, if we consider the case when u = wT+1, we have
T+1∑
t=1

ft(wt+1) ≤
T+1∑
t=1

ft(wT+1)

However, by the definition of FTL, for any u ∈ S, we have
T∑
t=1

ft(wT+1) ≤
T∑
t=1

ft(u) ⇐⇒
T+1∑
t=1

ft(wt+1) ≤
T+1∑
t=1

ft(wT+1) ≤
T+1∑
t=1

ft(u).

■

Note on Example of a quadratic loss function (Percy Liang, 2016) Consider a quadratic loss

function where nature chooses the input zt satisfying the norm bound ||zt||2 ≤M :

ft(w) =
1

2
||w − zt||22.

According to the definition of FTL, wt+1 is defined by

min
w∈Rd

t∑
i=1

1

2
||w − zi||22.

Since this is a convex function, FOC leads to

wt+1 =
1

t

t∑
i=1

zi =
1

t
((t− 1)wt + zt). (wt =

1

t− 1

t−1∑
i=1

zi)
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The lemma provides a bound, i.e.,

Regret(S) ≤
T∑
t=1

[ft(wt)− ft(wt+1)]

=

T∑
t=1

[
1

2
||wt − zt||22 −

1

2
||wt+1 − zt||22]

=

T∑
t=1

[
1

2
(1− (

t− 1

t
)2)||wt − zt||22] (wt+1 = wt −

1

t
(wt − zt))

=

T∑
t=1

[
1

2
(
2t− 1

t2
)||wt − zt||22]

≤
T∑
t=1

[
1

t
||wt − zt||22]

≤
T∑
t=1

[
1

t
4M2] (||wt − zt||22 ≤ (||wt||2 + ||zt||2)2)

≤ 4M2(log(T ) + 1) (

T∑
t=1

1

t
≤ 1 +

∫ T

1

1

t
dt = log(T ) + 1)

.

Note on Example of a scalar linear loss function Consider a scalar linear loss function where

nature chooses the scalar input zt ∈ R satisfying the norm bound |zt| ≤ 1:

ft(wt) = w⊤zt.

If the nature chooses z0 = −0.5, zi = 1 if i is even, and zi = −1 if i > 1 is odd, then the FTL

learner will output w1 = 0, wi = 1 if i is even, and wi = −1 if i > 1 is odd. The FTL learner’s

cumulative loss will hence be T − 1, while the cumulative loss of expert u = 0 will be 0. Thus,

the FTL strategy is undesired since its regret is linearly increasing with T .

7.4 Follow The Regularized Leader (FTRL) Strategy: ℓ2-norm-squared
regularizer

Definition 7.7 (Follow The Regularized Leader (FTRL) Strategy)
Given the regularizer ψ : Rd → R, following the regularized leader strategy means we

choose

wt+1 = argmin
w∈S

ψ(w) +
t∑

i=1

ℓi(w).

Note on A standard regularizer is ψ(w) = λ
2 ||w||

2
2.

Lemma 7.2 (Regret Bound for FTRL in the linear setting)
Suppose that

ft(w) = z⊤t w
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is the linear loss function and S is a convex set. Then we have the following upper-bound

on the FTRL with ψ(w) = λ
2 ||w||

2
2 learner’s regret at iteration T :

Regret(u) ≤ λ

2
||u||22 +

1

λ

T∑
t=1

||zt||22.

Moreover, if ||u||2 ≤ B for every u ∈ S and also ||zt||2 ≤M , then

Regret(S) ≤ λB2

2
+
TM2

λ
≤MB

√
2T ,

where the equality holds when λ∗ = M
B

√
T
2 .

Proof x ■

Definition 7.8 (Online Gradient Descent (OGD) Algorithm (Shalev-Shwartz and Ben-David, 2014))
If the loss function is not linear, we linearize the loss function, i.e.,

ft+1(w) ≈ ft+1(wt) +∇ft+1(wt)
⊤(w −wt)

and use online gradient descent algorithm.

Algorithm 1: Online Gradient Descent (OGD) Algorithm
Data: current period t, initial inventory It−1, initial capital Bt−1, demand samples
Result: Optimal order quantity Q∗

t

1 Pick an initial point w1 ∈ S;
2 for t = 1 to T do
3 Output wt and receive ft;
4 Compute zt = ∇ft(wt);
5 Pick a step-size αt > 0;
6 Update wt+ 1

2
) ← wt − αtzt;

7 Project wt+ 1
2

onto S as wt+1 ← ΠS(wt+ 1
2
) = argminw∈S ||w −w(t+ 1

2
)||;

8 end

Note on Example of SVM Consider the online SVM problem with the following loss function

at iteration t for model parameter w ∈ S = {u ∈ Rd : ||u||2 ≤ 1} and data point (xt, yt):

ft(w) = max{0, 1− ytx⊤
t w.

Suppose that every xt ∈ Rd satisfies ||xt||2 ≤ B and yt ∈ {−1,+1}, then ft is a B-Lipschitz

function. The pseudocode of OGD is

Theorem 7.1 (Regret Bound for OGD Learner (Shalev-Shwartz and Ben-David, 2014, p. 301))
For the OGD learner initialized at w1 = 0 with respect to every u ∈ S, we have the

following regret bound:

Regret(u) ≤ ||u||
2
2

2α
+
α

2

T∑
t=1

||zt||22.
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Algorithm 2: Online Gradient Descent (OGD) Algorithm of SVM
1 Pick an initial point w1 ∈ S, i.e., ||w1||2 ≤ 1;
2 for t = 1 to T do
3 Output wt and receive ft;
4 Compute zt = ∇ft(wt) = −yt1(1 ≥ ytx⊤

t wt)xt ;
5 Pick a step-size αt > 0;
6 Update wt+ 1

2
) ← wt − αtzt;

7 Project wt+ 1
2

onto S as wt+1 =

{
wt+ 1

2
if ||wt+ 1

2
||2 ≤ 1

wt+ 1
2
/||wt+ 1

2
||2 otherwise.

;

8 end

Moreover, if we asume that every ft is ρ-Lipschitz and ||u||2 ≤ B for every u ∈ S, we

have

Regret(S) ≤ Bρ
√
T

when α∗ = B
ρ
√
T

.

Proof For every u ∈ S, we have

||w(t+1) − u||22 − ||w(t) − u||22
=||w(t+1) − u||22 − ||w(t+ 1

2
) − u||22 + ||w(t+ 1

2
) − u||22 − ||w(t) − u||22

≤||w(t+ 1
2
) − u||22 − ||w(t) − u||22 (||w(t+1) − u||22 ≤ ||w(t+ 1

2
) − u||22 by Projection Lemma)

=||w(t) − αzt − u||22 − ||w(t) − u||22
=α2||zt||22 − 2αz⊤t (wt − u)

≤α2||zt||22 − 2α(ft(wt)− ft(u)) (Convexity of ft)

.

Therefore, summing up leads to

Regret(S) =
T∑
t=1

[ft(wt)− ft(u)]

≤ 1

2α
||w1 − u||22 −

1

2α
||wT+1 − u||22 +

α

2

T∑
t=1

||zt||22

≤ ||u||
2
2

2α
+
α

2

T∑
t=1

||zt||22 (w1 = 0)

.

This proves the first bound in the theorem. The second bound follows from the assumption that

ft is ρ-Lipschitz, which implies that ||zt|| ≤ ρ. ■
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7.5 Follow The Regularized Leader (FTRL) Strategy: general regularizer

Definition 7.9 (Fenchel Conjugate)
For a function ψ : Rd → R we define its Fenchel conjugate ψ∗ : Rd → R as

ψ∗(θ) = sup
w∈Rd

w⊤θ − ψ(w).

Note on Examples
1. Consider the ℓ2-norm-squared function ψ(w) = λ

2 ||w||
2
2, its Fenchel conjugate is 1

2λ ||θ||
2
2

when w∗ = 1
λθ.

2. Consider the convex quadratic function ψ(w) = 1
2w

TAw for a positive definite A ≻ 0,

its Fenchel conjugate is 1
2θ

TA−1θ when w∗ = A−1θ.

3. Consider the negative entropy function ψ(w) = wT log(w), its Fenchel conjugate is∑d
i=1 exp(θi − 1) when w∗

i = exp(θi − 1).

Property 7.1 (Convexity of Fenchel Conjugate)
For every function ψ : Rd → R, the Fenchel conjugate ψ∗ is a convex function.

Property 7.2 (Gradient of Fenchel Conjugate)
Consider the Fenchel conjugate of a differentiable function ψ : Rd → R. Then, the

gradient of the conjugate function will be

∇ψ∗(θ) = argmax
w∈Rd

w⊤θ − ψ(w).

Property 7.3 (Fenchel Conjugate of Convex Functions)
Consider a convex function ψ : Rd → R, ψ’s double conjugate ψ∗∗ = ψ, i.e.,

ψ(w) = sup
w∈Rd

w⊤θ − ψ∗(θ).

Theorem 7.2 (Fenchel-Young inequality)
Consider ψ : Rd → R and its Fenchel conjugate ψ∗. For every w, θ ∈ Rd:

w⊤θ ≤ ψ(w) + ψ∗(θ).

Definition 7.10 (Online Mirror Descent (OMD) Algorithm)
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Algorithm 3: Online Mirror Descent (OMD) Algorithm
Data: current period t, initial inventory It−1, initial capital Bt−1, demand samples
Result: Optimal order quantity Q∗

t

1 Pick an initial point w1 ∈ S;
2 for t = 1 to T do
3 Output wt and receive ft;
4 Compute zt = ∇ft(wt);
5 Update θt ← θt−1 + zt;
6 Update wt+1 ← ∇ψ∗(θt) = argminw ψ(w)−w⊤θt;
7 end
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Notations

Table 1: Summary of Notations

Parameters

x a column vector
Ai,j the (i, j) element of A
x(t) A parameter in the tth step of an iterative algorithm.
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